By Topic

Magnet Pole Shape Design of Permanent Magnet Machine for Minimization of Torque Ripple Based on Electromagnetic Field Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Seok-Myeong Jang ; Dept. of Electr. Eng., Chungnam Nat. Univ., Daejeon, South Korea ; Hyung-Il Park ; Jang-Young Choi ; Kyoung-Jin Ko
more authors

This paper deals with the magnet pole shape design of permanent magnet machines for the minimization of torque ripple based on electromagnetic field theory. On the basis of a magnetic vector potential and a two-dimensional (2-D) polar system, analytical solutions for flux density due to permanent magnet (PM) and current are obtained. In particular, the analytical solutions for mathematical expressions of magnets with different circumferential thicknesses can be solved by introducing improved magnetization modeling techniques, resulting in accurate calculations of electromagnetic torque. The analytical results are validated extensively by nonlinear finite element method (FEM). Test results such as back-emf measurements are also given to confirm the analyses. Finally, on the basis of derived analytical solutions, a reduction of torque ripple can be achieved.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )