Cart (Loading....) | Create Account
Close category search window
 

Hysteresis Effects of Laminated Steel Materials on Detent Torque in Permanent Magnet Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li, Y.B. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., Kowloon, China ; Shuangxia Niu ; Ho, S.L. ; Yanhai Li
more authors

Hysteresis effects of laminated steel materials on the detent torque in permanent magnet (PM) motors are described physically. There are many methods to simulate hysteresis effects. However most studies only focus on loss calculation but not on other important issues. Based on field orientation interpolation method, four-quadrant hysteresis effects are taken into consideration in the proposed cogging torque computation. Simulation results using finite element analysis (FEA) show that laminated materials with high hysteresis effects give higher detent torque when compared to those with narrow hysteresis loops. Two brushed type PMDC motors, with a 4-pole, 22-slot configuration and with different laminated steel materials, are built, and their test data are used to validate the analysis.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.