By Topic

Evaluation of Magnetic Suspension Performance in a Multi-Consequent-Pole Bearingless Motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Asama, J. ; Shizuoka Univ., Hamamatsu, Japan ; Nakamura, R. ; Sugimoto, H. ; Chiba, A.

A bearingless motor combines the functions of both noncontact magnetic suspension and torque generation in a single motor unit. Therefore, it offers advantages such as no grease lubrication, no contamination, and can be maintenance free. For low speed rotating and swinging stages (or platforms), the authors have developed a multi-consequent-pole bearingless motor. It has 40 poles and 48 slots with two-pole toroidal suspension windings. The advantage of the multi-pole bearingless motor is its low suspension force variation compared with other bearingless motors with low pole numbers. The aim of this paper is to evaluate the suspension force performance of the bearingless motor. The measured suspension force differed by 21% from the calculated three-dimensional finite element method (3D-FEM) results. It was found that the discrepancy is caused by the number of mesh elements in the 3D-FEM calculation, manufacturing and assembly errors, and the iron stack fill factor.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )