Cart (Loading....) | Create Account
Close category search window
 

Examination of an Interior Permanent Magnet Type Axial Gap Motor for the Hybrid Electric Vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Arakawa, T. ; Grad. Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo, Japan ; Takemoto, M. ; Ogasawara, S. ; Inoue, K.
more authors

Hybrid electric vehicles (HEVs) that emit less carbon dioxide have attracted much attention and rapidly become widespread, but further popularization of HEVs requires further technical advancement of mounted traction motors. Accordingly, our research group focuses on axial gap motors that can realize high torque density. In this paper, an axial gap motor with a novel interior permanent magnet (IPM) rotor structure is proposed and an examination of the proposed motor at the actual motor size of an HEV is presented. For comparison, we selected the newest radial gap-type 60 kW IPM synchronous motor equipped in the third-generation Toyota Prius. Under the condition that the size of the proposed motor be the same as the comparison motor, we confirmed through three-dimensional finite-element analysis that the proposed motor could output twice the maximum torque of the comparison motor. In addition, a comparison was made with a previously reported conventional IPM-type axial gap motor, and the proposed motor was found to be more effective in generating reluctance torque. Moreover, the proposed motor exhibited sufficient durability to irreversible demagnetization of the permanent magnets, to stress caused by rotating the rotor, and to unbalanced electromagnetic forces caused by axial rotor eccentricity.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.