By Topic

Consideration of glare from daylight in the control of the luminous atmosphere in buildings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arnal, E. ; Maison des Technol., Sherpa-Eng. Co., Toulon, France ; Anthierens, C. ; Bideaux, E.

This paper presents recent investigations on modeling and control of the luminous atmosphere in buildings. The luminous atmosphere desired by the occupants is defined by the amount and the distribution of light entering the room. These criteria reflect the mean optic state of the room. In tertiary building, the rooms generally have several artificial and natural light sources, this is why the light controller developed here is based on an optimization method to determine the best distribution of light flows among all the sources. The optimal solution is computed by considering various goals like minimizing the energy consumption. In this paper, the authors present a new extension of the luminous atmosphere controller that prevents glare caused by the daylight from occurring in the room. Detection of outdoor dazzling sources is performed by a fisheye video camera fixed on the building envelope. A numerical method is then used to determine the areas of potential glare within the room and to define operating limits on actuators in order to reject them. To show the impact of glare rejection on the luminous atmosphere controller, the authors have simulated the control in a room equipped with automated Venetian blinds and lights during a whole day.

Published in:

Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International Conference on

Date of Conference:

3-7 July 2011