By Topic

Preliminary experiments on robotic assembly using a hybrid-type variable stiffness actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Byeong-Sang Kim ; Sch. of Mech. Eng., Korea Univ., Seoul, South Korea ; Young-Loul Kim ; Jae-Bok Song

Precision robotic assembly requires compliant motion to avoid jamming or wedging. To achieve compliant motion, impedance control and a passive compliance device, such as a RCC (remote center compliance) device, have been used in robotic assembly. However, impedance control cannot provide low impedance for the high-frequency range, and load capacity and allowable misalignment of the RCC device are limited. To cope with these problems, we propose to use a variable stiffness actuator in robotic assembly. The 3-DOF manipulator including two HVSAs was developed, and the experiments on robotic assembly were carried out. Two HVSAs provide low impedance to compensate for the lateral and angular errors between the assembly parts. To show the advantages of the HVSA-actuated manipulator over the force-controlled manipulator, we conducted comparison experiments on robotic assembly with the 6-DOF robot manipulator which was controlled by an impedance controller. A series of experiments show that the HVSA-actuated manipulator is more beneficial to execute the tasks requiring both fast motion for high efficiency and low impedance for operational safety.

Published in:

Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International Conference on

Date of Conference:

3-7 July 2011