By Topic

Distributed Node-Specific LCMV Beamforming in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alexander Bertrand ; Dept. of Electrical Engineering (ESAT-SCD), Katholieke Universiteit Leuven, Leuven, Belgium ; Marc Moonen

In this paper, we consider the linearly constrained distributed adaptive node-specific signal estimation (LC-DANSE) algorithm, which generates a node-specific linearly constrained minimum variance (LCMV) beamformer, i.e., with node-specific linear constraints, at each node of a wireless sensor network. The algorithm significantly reduces the number of signals that are exchanged between nodes, and yet obtains the optimal LCMV beamformers as if each node has access to all the signals in the network. We consider the case where all the steering vectors are known, as well as the blind beamforming case where the steering vectors are not known. We formally prove convergence and optimality for both versions of the LC-DANSE algorithm. We also consider the case where nodes update their local beamformers simultaneously instead of sequentially, and we demonstrate by means of simulations that applying a relaxation is often required to obtain a converging algorithm in this case. We also provide simulation results that demonstrate the effectiveness of the algorithm in a realistic speech enhancement scenario.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 1 )