Cart (Loading....) | Create Account
Close category search window
 

Cardiovascular Modeling of Congenital Heart Disease Based on Neonatal Echocardiographic Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Nakao, M. ; Grad. Sch. of Inf., Kyoto Univ., Kyoto, Japan ; Maeda, K. ; Haraguchi, R. ; Kurosaki, K.
more authors

This paper proposes a 3-D cardiovascular modeling system based on neonatal echocardiographic images. With the system, medical doctors can interactively construct patient-specific cardiovascular models, and share the complex topology and the shape information. For the construction of cardiovascular models with a variety of congenital heart diseases, we propose a set of algorithms and interface that enable editing of the topology and shape of the 3-D models. In order to facilitate interactivity, the centerline and radius of the vessels are used to edit the surface of the heart vessels. This forms a skeleton where the centerlines of blood vessel serve as the nodes and edges, while the radius of the blood vessel is given as an attribute value to each node. Moreover, parent-child relationships are given to each skeleton. They are expressed as the directed acyclic graph, where the skeletons are viewed as graph nodes and the connecting points are graph edges. The cardiovascular models generated from some patient data confirmed that the developed technique is capable of constructing cardiovascular disease models in a tolerable timeframe. It is successful in representing the important structures of the patient-specific heart vessels for better understanding in preoperative planning and electric medical recording of the congenital heart disease.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:16 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.