By Topic

Scaling Between Channel Mobility and Interface State Density in SiC MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rozen, J. ; Dept. of Phys. & Astron., Vanderbilt Univ., Nashville, TN, USA ; Ahyi, A.C. ; Xingguang Zhu ; Williams, J.R.
more authors

The direct impact of the SiO2/4H-SiC interface state density (Dit) on the channel mobility of lateral field-effect transistors is studied by tailoring the trap distribution via nitridation of the thermal gate oxide. We observe that mobility scales like the inverse of the charged state density, which is consistent with Coulomb-scattering-limited transport at the interface. We also conclude that the Dit further impacts even the best devices by screening the gate potential, yielding small subthreshold swings and poor turn-ON characteristics.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 11 )