By Topic

Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ginolhac, G. ; SATIE-ENS CACHAN, Cachan, France ; Forster, P. ; Pascal, F. ; Ovarlez, J.

In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 1 )