By Topic

Total Flux Minimization Control for Integrated Inter-Phase Inductors in Paralleled, Interleaved Three-Phase Two-Level Voltage-Source Converters With Discontinuous Space-Vector Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Di Zhang ; GE Global Res. Center, Niskayuna, NY, USA ; Fei Wang ; Burgos, R. ; Boroyevich, D.

This paper presents a control method to minimize the total flux in the integrated interphase inductors of paralleled, interleaved three-phase two-level voltage-source converters (VSCs) using discontinuous space vector modulation (DPWM). Specifically, different inductor structures used to limit circulating currents are introduced and compared, and the structure and flux distribution of two types of integrated interphase inductors are analyzed in detail. Based on that, a control method to minimize the total flux in such integrated interphase inductor is proposed for a parallel converter system using interleaved DPWM. The method eliminates the circulating currents during the peak range of the converter output currents; hence the total flux is minimized and only determined by the system load requirements. This control method introduces very limited additional switching actions, which do not significantly affect the converter electrothermal design. Experimental results verify the analysis and the feasibility of the proposed control method.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 4 )