By Topic

Completely Automated Multiresolution Edge Snapper—A New Technique for an Accurate Carotid Ultrasound IMT Measurement: Clinical Validation and Benchmarking on a Multi-Institutional Database

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Molinari, F. ; Dept. of Electron., Politec. di Torino, Torino, Italy ; Pattichis, C.S. ; Zeng, G. ; Saba, L.
more authors

The aim of this paper is to describe a novel and completely automated technique for carotid artery (CA) recognition, far (distal) wall segmentation, and intima-media thickness (IMT) measurement, which is a strong clinical tool for risk assessment for cardiovascular diseases. The architecture of completely automated multiresolution edge snapper (CAMES) consists of the following two stages: 1) automated CA recognition based on a combination of scale-space and statistical classification in a multiresolution framework and 2) automated segmentation of lumen-intima (LI) and media-adventitia (MA) interfaces for the far (distal) wall and IMT measurement. Our database of 365 B-mode longitudinal carotid images is taken from four different institutions covering different ethnic backgrounds. The ground-truth (GT) database was the average manual segmentation from three clinical experts. The mean distance ± standard deviation of CAMES with respect to GT profiles for LI and MA interfaces were 0.081 ± 0.099 and 0.082 ± 0.197 mm, respectively. The IMT measurement error between CAMES and GT was 0.078 ± 0.112 mm. CAMES was benchmarked against a previously developed automated technique based on an integrated approach using feature-based extraction and classifier (CALEX). Although CAMES underestimated the IMT value, it had shown a strong improvement in segmentation errors against CALEX for LI and MA interfaces by 8% and 42%, respectively. The overall IMT measurement bias for CAMES improved by 36% against CALEX. Finally, this paper demonstrated that the figure-of-merit of CAMES was 95.8% compared with 87.4% for CALEX. The combination of multiresolution CA recognition and far-wall segmentation led to an automated, low-complexity, real-time, and accurate technique for carotid IMT measurement. Validation on a multiethnic/multi-institutional data set demonstrated the robustness of the technique, which can constitute a clinically valid IMT measurement for assi- tance in atherosclerosis disease management.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )