Cart (Loading....) | Create Account
Close category search window
 

The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carneiro, G. ; Australian Centre for Visual Technol., Univ. of Adelaide, Adelaide, SA, Australia ; Nascimento, J.C. ; Freitas, A.

We present a new supervised learning model designed for the automatic segmentation of the left ventricle (LV) of the heart in ultrasound images. We address the following problems inherent to supervised learning models: 1) the need of a large set of training images; 2) robustness to imaging conditions not present in the training data; and 3) complex search process. The innovations of our approach reside in a formulation that decouples the rigid and nonrigid detections, deep learning methods that model the appearance of the LV, and efficient derivative-based search algorithms. The functionality of our approach is evaluated using a data set of diseased cases containing 400 annotated images (from 12 sequences) and another data set of normal cases comprising 80 annotated images (from two sequences), where both sets present long axis views of the LV. Using several error measures to compute the degree of similarity between the manual and automatic segmentations, we show that our method not only has high sensitivity and specificity but also presents variations with respect to a gold standard (computed from the manual annotations of two experts) within interuser variability on a subset of the diseased cases. We also compare the segmentations produced by our approach and by two state-of-the-art LV segmentation models on the data set of normal cases, and the results show that our approach produces segmentations that are comparable to these two approaches using only 20 training images and increasing the training set to 400 images causes our approach to be generally more accurate. Finally, we show that efficient search methods reduce up to tenfold the complexity of the method while still producing competitive segmentations. In the future, we plan to include a dynamical model to improve the performance of the algorithm, to use semisupervised learning methods to reduce even more the dependence on rich and large training sets, and to design a shape model less dependent on the trai- ing set.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.