By Topic

k-Anonymization in the Presence of Publisher Preferences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rinku Dewri ; Dept. of Comput. Sci., Univ. of Denver, Denver, CO, USA ; Indrajit Ray ; Indrakshi Ray ; Darrell Whitley

Privacy constraints are typically enforced on shared data that contain sensitive personal attributes. However, owing to its adverse effect on the utility of the data, information loss must be minimized while sanitizing the data. Existing methods for this purpose modify the data only to the extent necessary to satisfy the privacy constraints, thereby asserting that the information loss has been minimized. However, given the subjective nature of information loss, it is often difficult to justify such an assertion. In this paper, we propose an interactive procedure to generate a data generalization scheme that optimally meets the preferences of the data publisher. A data publisher guides the sanitization process by specifying aspirations in terms of desired achievement levels in the objectives. A reference direction based methodology is used to investigate neighborhood solutions if the generated scheme is not acceptable. This approach draws its power from the constructive input received from the publisher about the suitability of a solution before finding a new one.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:23 ,  Issue: 11 )