By Topic

Genetic engineering of stem cells by non-viral vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Madeira, C. ; Dept. of Bioeng., Inst. Super. Tecnico (IST), Lisbon, Portugal ; Ribeiro, S.C. ; Mendes, R. ; Pinheiro, I.S.M.
more authors

Stem/progenitor cells hold a great promise for application in several therapies due to their unique biological characteristics. With the purpose of harnessing these cells full potential in cell-or gene-based therapies it might be advantageous to enhance some of their features through gene delivery strategies. Accordingly, we are interested in developing efficient and safe methodologies to genetically engineer stem cells, boosting their therapeutic efficacy in Regenerative Medicine. In our work, delivery of plasmid DNA to human Bone Marrow Mesenchymal Stem Cells (BM-MSC) was optimized by lipofection and by a recently available microporation technique and no effect was observed in their immunophenotypic characteristics or differentiative potential. After lipofection similar number of plasmid copies was determined at different cell passages. Importantly, cell proliferation kinetics slowed down due to the presence of plasmid. Overall, we believe our findings are extremely useful towards the maximization of gene delivery to human MSC, without compromising cell function and viability.

Published in:

Bioengineering (ENBENG), 2011. ENBENG 2011. 1st Portuguese Meeting in

Date of Conference:

1-4 March 2011