Cart (Loading....) | Create Account
Close category search window
 

Neural networks for modeling nonlinear memoryless communication channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ibukahla, M. ; ENSEEIHT, Toulouse, France ; Sombria, J. ; Castanie, F. ; Bershad, N.J.

This paper presents a neural network approach for modeling nonlinear memoryless communication channels. In particular, the paper studies the approximation of the nonlinear characteristics of traveling-wave tube (TWT) amplifiers used in satellite communications. The modeling is based upon multilayer neural networks, trained by the odd and even backpropagation (BP) algorithms. Simulation results demonstrate that neural network models fit the experimental data better than classical analytical TWT models,

Published in:

Communications, IEEE Transactions on  (Volume:45 ,  Issue: 7 )

Date of Publication:

Jul 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.