By Topic

Web and Personal Image Annotation by Mining Label Correlation With Relaxed Visual Graph Embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yi Yang ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Fei Wu ; Feiping Nie ; Shen, H.T.
more authors

The number of digital images rapidly increases, and it becomes an important challenge to organize these resources effectively. As a way to facilitate image categorization and retrieval, automatic image annotation has received much research attention. Considering that there are a great number of unlabeled images available, it is beneficial to develop an effective mechanism to leverage unlabeled images for large-scale image annotation. Meanwhile, a single image is usually associated with multiple labels, which are inherently correlated to each other. A straightforward method of image annotation is to decompose the problem into multiple independent single-label problems, but this ignores the underlying correlations among different labels. In this paper, we propose a new inductive algorithm for image annotation by integrating label correlation mining and visual similarity mining into a joint framework. We first construct a graph model according to image visual features. A multilabel classifier is then trained by simultaneously uncovering the shared structure common to different labels and the visual graph embedded label prediction matrix for image annotation. We show that the globally optimal solution of the proposed framework can be obtained by performing generalized eigen-decomposition. We apply the proposed framework to both web image annotation and personal album labeling using the NUS-WIDE, MSRA MM 2.0, and Kodak image data sets, and the AUC evaluation metric. Extensive experiments on large-scale image databases collected from the web and personal album show that the proposed algorithm is capable of utilizing both labeled and unlabeled data for image annotation and outperforms other algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )