By Topic

An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bruzzone, L. ; Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy ; Serpico, S.B.

The authors propose a supervised nonparametric technique based on the “compound classification rule” for minimum error, to detect land-cover transitions between two remote-sensing images acquired at different times. Thanks to a simplifying hypothesis, the compound classification rule is transformed into a form easier to compute. In the obtained rule, an important role is played by the probabilities of transitions, which take into account the temporal dependence between two images. In order to avoid requiring that training sets be representative of all possible types of transitions, the authors propose an iterative algorithm which allows the probabilities of transitions to be estimated directly from the images under investigation. Experimental results on two Thematic Mapper images confirm that the proposed algorithm may provide remarkably better detection accuracy than the “Post Classification Comparison” algorithm, which is based on the separate classifications of the two images

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:35 ,  Issue: 4 )