Cart (Loading....) | Create Account
Close category search window

On the Reachability and Observability of Path and Cycle Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parlangeli, G. ; Dept. of Eng., Univ. of Lecce, Lecce, Italy ; Notarstefano, G.

In this technical note we investigate the reachability and observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. Specifically, we provide necessary and sufficient conditions, based on simple rules from number theory, to characterize all and only the nodes from which the network system is reachable (respectively observable). Interesting immediate corollaries of our results are: i) a path graph is reachable (observable) from any single node if and only if the number of nodes of the graph is a power of two,n = 2i ; i ∈N and ii) a cycle is reachable (observable) from any pair of nodes if and only if n is a prime number. For any set of control (observation) nodes, we provide a closed form expression for the (unreachable) unobservable eigenvalues and for the eigenvectors of the (unreachable) unobservable subsystem.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.