By Topic

All-Optical Highly Sensitive Chromatic Dispersion Monitoring Method Utilizing Phase-Matched Four-Wave Mixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sheng Cui ; Wuhan Nat. Lab. for Optoelectron., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Simin Sun ; Li Li ; Changjian Ke
more authors

This letter represents a highly sensitive all-optical chromatic dispersion (CD) monitoring method utilizing phase-matched four-wave mixing (FWM) in highly nonlinear optical fibers (HNLFs). The monitoring ability arises from the exponential FWM gain which provides an exponential power transfer function (PTF) mapping the CD experienced by the signals onto the average power of the output idler wave. Our method is simple and much more sensitive compared to the other PTF-based monitoring methods proposed before. The sensitivity enhancement is important for highly accurate dispersion compensation and makes the method effective for signals with high duty cycles. Furthermore, by tailoring the phase-matched wavelength range our method can be used to monitor CD in a wavelength-division-multiplexing (WDM) network.

Published in:

Photonics Technology Letters, IEEE  (Volume:23 ,  Issue: 22 )