By Topic

Hierarchical maximum-likelihood classification for improved accuracies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Ediriwickrema ; Comput. Graphics Center, North Carolina State Univ., Raleigh, NC, USA ; S. Khorram

Among the supervised parametric classification methods, the maximum-likelihood (MLH) classifier has become popular and widespread in remote sensing. Reliable prior probabilities are not always freely available, and it is a common practice to perform the MLH classification with equal prior probabilities. When equal prior probabilities are used, the advantages in MLH classification may not be attained. This study has explored a hierarchical pixel classification (HPC) method to estimate prior probabilities for the spectral classes from the Landsat thematic mapper (TM) data and spectral signatures. The TM pixels were visualized in multidimensional feature space relative to the spectral class probability surfaces. The pixels that fell within more than one probability region or outside all probability regions were categorized as the pixels likely to misclassify. Prior probabilities were estimated from the pixels that fell within spectral class probability regions. The pixels most likely to be correctly classified do not need extra information and were classified according to the probability region in which they fell. The pixels likely to be misclassified need additional information and were classified by MLH classification with the estimated prior probabilities. The classified image resulting from the HPC showed increased accuracy over three classification methods. Visualization of pixels in multidimensional feature space, relative to the spectral class probability reforms, overcome the practical difficulty in estimating prior probabilities while utilizing the available information

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:35 ,  Issue: 4 )