By Topic

Three-dimensional simulation of nonequilibrium seeded plasma in closed cycle disk MHD generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kobayashi, H. ; Dept. of Energy Sci., 4259 Nagatsuta, Yokohama, Japan ; Okuno, Yoshihiro ; Kabashima, S.

The three-dimensional (3-D) structure and behavior of nonequilibrium alkali metal seeded plasma in a supersonic disk closed cycle MHD (CCMHD) generator are simulated numerically. The simulation reveals the unsteady 3-D nonuniform plasma caused by the ionization instability. The plasma with low electron temperatures of ~5000 K, corresponding to the fully ionized seed plasma, has spiral structure in the r-θ plane, and looks like a straight pillar between walls in r-z plane. The plasma flows repeatedly downstream in the generator, changing the shape unsteadily. For high load resistance, the nonuniform region is contracted near the inlet of the generator, and the plasma becomes steady and three-dimensionally uniform. The nonuniform structure does not appear in the regions between the faced anodes and between the faced cathodes, although the electron temperature is relatively low (~3000 K) and the plasma is under the regime of a weakly ionized seed

Published in:

Plasma Science, IEEE Transactions on  (Volume:25 ,  Issue: 2 )