Cart (Loading....) | Create Account
Close category search window

The role of multielectrode geometry in the generation of pulsed intense electron beams in preionization-controlled open-ended hollow-cathode transient discharges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Dewald, E. ; Dept. of Phys., Erlangen-Nurnberg Univ., Germany ; Ganciu, M. ; Mandache, B.N. ; Musa, G.S.
more authors

High-voltage hollow-cathode glow discharges are used more and more to generate intense, pulsed electron beams. Such intense electron beams can be produced with high efficiency in preionization-controlled open-ended hollow-cathode transient discharges (PCOHC). This novel discharge is initiated by a low-current dc preionization discharge. The beam parameters are similar to those of the electron beam generated in pseudospark discharges. In this work, we present some measurements of the parameters for the electron beam generated by using a multielectrode (multigap) system instead of the single-gap device in this PCOHC configuration. This kind of multielectrode device was already used in pseudosparks to improve the intensity and collimation of the extracted beam. By using the multigap instead of the single gap, the total beam current (100-120 A) and the energetic part of the beam current (peak current 60-90 A and electron energies higher than approximately 3 keV) were substantially increased. However, the energy spectrum of the fast component has a large fraction of electrons at lower energies (4-10 keV for 26 kV breakdown voltage) when a multigap device is used instead of the single-gap configuration. A comparison between the single-gap and multigap PCOHC-produced pulsed intense electron beam is made too. The differences between the high-power pulsed electron beams produced in single-gap and multigap PCOHC configurations seem to be due to different developments of beam generation phases

Published in:

Plasma Science, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

Apr 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.