By Topic

Results of vacuum cleaning techniques on the performance of LiF field-threshold ion sources on extraction applied-B ion diodes at 1-10 TW

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
M. E. Cuneo ; Pulsed Power Sci. Center, Sandia Nat. Labs., Albuquerque, NM, USA ; P. R. Menge ; D. L. Hanson ; W. E. Fowler
more authors

Uncontrolled plasma formation on electrode surfaces limits performance in a wide variety of pulsed power devices such as electron and ion diodes, transmission lines, radio frequency (RF) cavities, and microwave devices. Surface and bulk contaminants on the electrodes in vacuum dominate the composition of these plasmas, formed through processes such as stimulated and thermal desorption followed by ionization. We are applying RF discharge cleaning, anode heating, cathode cooling, and substrate surface coatings to the control of the effects of these plasmas in the particular case of applied-B ion diodes on the SABRE (1 TW) and PBFA-X (30 TW) accelerators. Evidence shows that our LiF ion source provides a 200-700 A/cm2 lithium beam for 10-20 ns which is then replaced by a contaminant beam of protons and carbon. Other ion sources show similar behavior. Our electrode surface and substrate cleaning techniques reduce beam contamination, anode and cathode plasma formation, delay impedance collapse, and increase lithium energy, power, and production efficiency. Theoretical and simulation models of electron-stimulated and thermal-contaminant desorption leading to anode plasma formation show agreement with many features from experiment. Decrease of the diode electron loss by changing the shape and magnitude of the insulating magnetic field profiles increases the lithium output and changes the diode response to cleaning. We also show that the LiF films are permeable, allowing substrate contaminants to affect diode behavior. Substrate coatings of Ta and Au underneath the LiF film allow some measure of control of substrate contaminants, and provide direct evidence for thermal desorption. We have increased lithium current density by a factor of four and lithium energy by a factor of five through a combination of in situ surface and substrate cleaning, substrate coatings, and field profile modifications

Published in:

IEEE Transactions on Plasma Science  (Volume:25 ,  Issue: 2 )