By Topic

Fault Estimation Observer Design for Discrete-Time Takagi–Sugeno Fuzzy Systems Based on Piecewise Lyapunov Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ke Zhang ; Coll. of Autom. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China ; Bin Jiang ; Peng Shi

This paper studies the problem of robust fault estimation (FE) observer design for discrete-time Takagi-Sugeno (T-S) fuzzy systems via piecewise Lyapunov functions. Both the full-order FE observer (FFEO) and the reduced-order FE observer (RFEO) are presented. The objective of this paper is to establish a novel framework of the FE observer with less conservatism. First, under the multiconstrained design, an FFEO is proposed to achieve FE for discrete-time T-S fuzzy models. Then, using a specific coordinate transformation, an RFEO is constructed, which results in a new fault estimator to realize FE using current output information. Furthermore, by the piecewise Lyapunov function approach, less conservative results on both FFEO and RFEO are derived by introducing slack variables. Simulation results are presented to illustrate the advantages of the theoretic results that are obtained in this paper.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:20 ,  Issue: 1 )