By Topic

Cross-Layer Optimizations in Solid-State Drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jia-Hao Wang ; Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan ; Hsin-Hung Chen ; Wei-Jian Su ; Da-Wei Chang

Solid-state drives (SSDs) utilize parallel architectures to improve their IO throughput. Although log buffer based flash translation layers (FTLs) are widely employed in SSDs, little has been addressed on the issue of placing pages under a parallel architecture in such FTLs. In this letter, we evaluate three possible page placement policies and show that there is no best policy due to the tradeoff between the degree of parallelism and the garbage collection overhead. To achieve high performance SSDs, cross-layer optimization techniques involving the cooperation between the buffer management layer and the FTL are proposed in this letter to maximize the degree of parallelism while keeping a low garbage collection overhead. The basic idea is to let the FTL keep the garbage collection overhead low by eliminating high-cost cross-channel live page copying, while making the buffer management layer responsible for maximizing the degree of parallelism. Simulation results on five realistic or benchmark based workloads show that the proposed techniques reduce the response time of the SSD by up to 79%.

Published in:

IEEE Embedded Systems Letters  (Volume:3 ,  Issue: 4 )