By Topic

Highly Scaled Vertical Cylindrical SONOS Cell With Bilayer Polysilicon Channel for 3-D nand Flash Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)

A vertical cylindrical SONOS cell with a novel bilayer polysilicon channel down to 22-nm diameter for 3-D NAND Flash memory is successfully developed. We introduce a thin amorphous silicon layer along with the oxide-nitride-oxide (ONO) gate stack inside the memory hole. This silicon layer protects the tunnel oxide during opening of the gate stack at the bottom of the memory hole, after which it serves as the first layer of the bilayer polysilicon channel. This approach enables the 3-D architecture to achieve minimum cell area (4F2, with F being the feature size) without the need for the so-called pipeline connections. The smallest functional cells have the memory hole diameter F = 45 nm, resulting in 22-nm channel diameter. In case 16 cells are stacked, F = 45 nm would correspond to an equivalent 11-nm planar cell technology node. Excellent program/erase and retention obtained with the all-deposited ONO stack are demonstrated.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 11 )