By Topic

Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wang, D.Q. ; Coll. of Autom. Eng., Qingdao Univ., Qingdao, China

For parameter estimation of output error moving average (OEMA) systems, this study combines the auxiliary model identification idea with the filtering theory, transforms an OEMA system into two identification models and presents a filtering and auxiliary model-based recursive least squares (F-AM-RLS) identification algorithm. Compared with the auxiliary model-based recursive extended least squares algorithm, the proposed F-AM-RLS algorithm has a high computational efficiency. Moreover, a filtering and auxiliary model-based least squares iterative (F-AM-LSI) identification algorithm is derived for OEMA systems with finite measurement input-output data. Compared with the F-AM-RLS approach, the proposed F-AM-LSI algorithm updates the parameter estimation using all the available data at each iteration, and thus can generate highly accurate parameter estimates.

Published in:

Control Theory & Applications, IET  (Volume:5 ,  Issue: 14 )