By Topic

Semantic segmentation using regions in natural scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shilin Wu ; Shenyang Inst. of Autom., Chinese Acad. of Sci., Shenyang, China ; Feng Zhu ; Yingming Hao

By introducing an over-segmentation algorithm into the conditional model (CM), we propose a new region-based CM model (R-CM), and investigate its performance on semantic segmentation of images. In order to incorporate structure information of objects, we segment an image into regions by using an over-segmentation algorithm. Based on the results of CM model, we first consider assigning all pixels in one region with the same label, and then other feature potentials are included to counteract the influence of false over-segmentation. We compare our results to related work on the Olive & Torralba database and show that aside from improved accuracy of the whole database, our model obtains a perceptual improvement, with boundary of different objects correctly labeled.

Published in:

Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on  (Volume:4 )

Date of Conference:

12-14 Aug. 2011