By Topic

Wavelet neural network optimization applied to intrusion detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang Yan-hong ; Sch. of Inf. Eng., JDZ Ceramic Inst., Jingdezhen, China ; Cheng Xiang

The wavelet neural network combines wavelet transform and neural network advantages, a strong nonlinear mapping ability and adaptive, self learning, particularly suitable for intrusion detection systems. Wavelet neural network is easy to fall into local minima value, having slow convergence weakness. In this regard, we introduce the genetic algorithm to optimize neural network generating the initial weights and threshold value to determine a better search space, thereby overcoming the neural network easy to fall into local minima shortcomings; identified in the genetic algorithm the search space for fast training of the network, wavelet neural network to solve the traditional slow convergence problems. Simulations show that the method is feasible, the neural network approximation ability and generalization ability has been significantly increased.

Published in:

Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on  (Volume:6 )

Date of Conference:

12-14 Aug. 2011