By Topic

Common-Mode Noise Cancellation in Switching-Mode Power Supplies Using an Equipotential Transformer Modeling Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yick Po Chan ; The University of Hong Kong, Hong Kong ; Bryan Man Hay Pong ; Ngai Kit Poon ; Joe Chui Pong Liu

Electromagnetic interference (EMI) is a significant challenge in the design of high-efficiency switching-mode power supplies due to the presence of common-mode (CM) noise. In many power-supply designs, a variety of noise suppression schemes must be implemented in order to meet EMI requirements. Most of these schemes create power loss that lead to efficiency and thermal issues. In this paper, a transformer construction technique is proposed that effectively reduces the CM noise current injecting across the isolated primary and secondary windings. This technique is based on the zero equipotential line theory. A transformer design with the proposed CM noise cancellation technique can achieve high conversion efficiency as well as substantial CM noise rejection.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:54 ,  Issue: 3 )