By Topic

Research on the application of genetic algorithm combined with the “cleft-overstep” algorithm for improving learning process of MLP neural network with special error surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cong Huu Nguyen ; Fac. of Electron. Eng., Thai Nguyen Univ. of Technol., Thai Nguyen, Vietnam ; Thanh Nga Thi Nguyen ; Phuong Huy Nguyen

The success of an artificial neural network depends much on the training phase. Techniques for training neural network based on gradient are partially satisfying and are widely used in practice. However, in several cases which has special error surface similar to a deep cleft, these algorithms seem to work slowly and encounter local extreme values. Authors of this paper propose the use of genetic algorithm in combination with the “cleft-overstep” algorithm to improve the training process of neural network which has special error surface and illustrate this usage through a simple application in text recognition. First, An MLP artificial neural network with cleft-similar error surface is trained using back propagation algorithm and the results are analyzed. Next, the paper describes the usage of the proposed method to improve the training process of neural network on two aspects: correctness and rate of convergence. Implementation is done in and results obtained from Matlab environment.

Published in:

Natural Computation (ICNC), 2011 Seventh International Conference on  (Volume:1 )

Date of Conference:

26-28 July 2011