Cart (Loading....) | Create Account
Close category search window
 

Automatic classification of tuberculosis bacteria using neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rulaningtyas, R. ; Sch. of Electr. Eng. & Inf., Bandung Inst. of Technol., Bandung, Indonesia ; Suksmono, A.B. ; Mengko, T.L.R.

Sputum smear microscopy analysis is the important thing for early diagnosis tuberculosis diseases. A lot of patients in tuberculosis medical center cause the doctors and the technicians have heavy duty. Our research result can be used to reduce technician involvement in screening for tuberculosis and would be useful in laboratories. This research is early step to find appropriate method for identifying tuberculosis bacteria. The analysis of sputum smear requires highly trained to avoid high errors. It needs an appropriate pattern recognition and classification of tuberculosis bacteria. Before classification, geometric features of tuberculosis cell image are found from its binary image. The geometric features of tuberculosis cell image consist of circularity, compactness, eccentricity, and tortuosity. These geometric features would become inputs to the neural network trained with backpropagation method. The 100 samples would be divided into 75 training samples and 25 testing samples. After getting optimum weights and architectures of neural network with 20 neurons hidden layer, 0.05 learning rate, and 0.9 momentum, this network is used for classifying tuberculosis bacteria into two categories: tuberculosis bacteria or not. Results presented for several image taken from different binary cell image show that neural network classifies the presence of tuberculosis bacteria image accurately with mean square error 0.000368, error classification zero in training and testing processes for the data that is used in this research.

Published in:

Electrical Engineering and Informatics (ICEEI), 2011 International Conference on

Date of Conference:

17-19 July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.