By Topic

Minimum-Energy Cooperative Routing in Wireless Networks with Channel Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dehghan, M. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts Amherst, Amherst, MA, USA ; Ghaderi, M. ; Goeckel, D.

This paper considers the problem of finding minimum-energy cooperative routes in a wireless network with variable wireless channels. We assume that each node in the network is equipped with a single omnidirectional antenna and, motivated by the large body of physical layer research indicating its potential utility, that multiple nodes are able to coordinate their transmissions at the physical layer in order to take advantage of spatial diversity. Such coordination, however, is intrinsically intertwined with routing decisions, thus motivating the work. We first formulate the energy cost of forming a cooperative link between two nodes based on a two-stage transmission strategy assuming that only statistical knowledge about channels is available. Utilizing the link cost formulation, we show that optimal static routes in a network can be computed by running Dijkstra's algorithm over an extended network graph created by cooperative links. However, due to the variability of wireless channels, we argue that a many-to-one cooperation model in static routing is suboptimal. Hence, we develop an opportunistic routing algorithm based on many-to-many cooperation, and show that optimal routes in a network can be computed by a stochastic version of the Bellman-Ford algorithm. We use static and opportunistic optimal algorithms as baselines to develop heuristic link selection algorithms that are energy efficient while being computationally simpler than the optimal algorithms. We simulate our algorithms and show that while optimal cooperation and link selection can reduce energy consumption by almost an order of magnitude compared to non-cooperative approaches, our simple heuristics achieve similar energy savings while being computationally efficient as well.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 11 )