By Topic

A Network Decoupling Transform for Phasor Data Based Voltage Stability Analysis and Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wilsun Xu ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada ; Pordanjani, I.R. ; Yunfei Wang ; Vaahedi, E.

It is well known that a power network can be represented as a multinode, multibranch Thevenin circuit connecting loads to generators. This paper shows that eigen-decomposition can be performed on the Thevenin impedance matrix, creating a set of decoupled single-node, single-branch equivalent circuits. The decoupled circuits can reveal important characteristics of a power system. By applying the transform to calculated or measured voltage phasor data, a technique for tracking the modes of voltage collapse and for identifying areas vulnerable to voltage collapse has been developed. Case studies conducted on multiple power systems have confirmed the effectiveness of the proposed method. In addition to voltage stability applications, the proposed transform presents a new approach for processing and interpreting multilocation phasor data.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 1 )