By Topic

Dielectric characterization of (1??x)PMN??xPT (x = 0.07 and 0.10) ceramics synthesized by an ethylene glycol-based soft chemical route

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tailor, H.N. ; Dept. of Chem., Simon Fraser Univ., Burnaby, BC, Canada ; Bokov, A.A. ; Zuo-Guang Ye

Materials based on relaxor ferroelectrics have become one of the most important families of functional materials being explored for such applications as sensors/actuators, micro-electromechanical systems (MEMS), non-volatile random access memories, and high-energy-density capacitors. Fabrication of high-quality relaxor-based ceramics remains, however, a challenging task. In this work, a new soft chemical synthetic method for the preparation of the complex perovskite-based relaxor ferroelectric solid solutions, (1-x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 was developed using ethylene glycol as the solvent. Ceramics with compositions of x = 0.07 and 0.10 were prepared and it was found that a 10% stoichiometric excess of Pb2+ was required to compensate for lead oxide volatility at the high temperatures used for sintering. The ceramics produced by this method show excellent dielectric properties at room temperature, such as a high dielectric constant (~20 000) and low loss over a large temperatures range (tanδ <; 0.01 between 20 and 200°C). The temperature dependence of the dielectric constant exhibits typical relaxor ferroelectric behavior, fitting a quadratic law which describes the high-temperature slope of ε'(T) peak. The frequency dispersion of the temperature of maximum permittivity satisfies the Vogel-Fulcher law.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 9 )