By Topic

Fully Automatic Recognition of the Temporal Phases of Facial Actions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michel F. Valstar ; Department of Computing, Imperial College London, London, U.K. ; Maja Pantic

Past work on automatic analysis of facial expressions has focused mostly on detecting prototypic expressions of basic emotions like happiness and anger. The method proposed here enables the detection of a much larger range of facial behavior by recognizing facial muscle actions [action units (AUs)] that compound expressions. AUs are agnostic, leaving the inference about conveyed intent to higher order decision making (e.g., emotion recognition). The proposed fully automatic method not only allows the recognition of 22 AUs but also explicitly models their temporal characteristics (i.e., sequences of temporal segments: neutral, onset, apex, and offset). To do so, it uses a facial point detector based on Gabor-feature-based boosted classifiers to automatically localize 20 facial fiducial points. These points are tracked through a sequence of images using a method called particle filtering with factorized likelihoods. To encode AUs and their temporal activation models based on the tracking data, it applies a combination of GentleBoost, support vector machines, and hidden Markov models. We attain an average AU recognition rate of 95.3% when tested on a benchmark set of deliberately displayed facial expressions and 72% when tested on spontaneous expressions.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 1 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal