By Topic

Enhancing Source Camera Identification Performance With a Camera Reference Phase Sensor Pattern Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiangui Kang ; Sch. of Inf. Sci. & Technol., Sun Yat-Sen Univ., Guangzhou, China ; Yinxiang Li ; Zhenhua Qu ; Jiwu Huang

Sensor pattern noise (SPN) extracted from digital images has been proved to be a unique fingerprint of digital cameras. However, SPN can be contaminated largely in the frequency domain by image content and nonunique artefacts of JPEG compression, on-sensor signal transfer, sensor design, color interpolation. The source camera identification (CI) performance based on SPN needs to be improved for small sizes of images and especially in resisting JPEG compression. Because the SPN is modelled as an additive white Gaussian noise (AWGN) in its extraction process from an image, it is reasonable to assume the camera reference SPN to be a white noise signal in order to remove the interference mentioned above. The noise residues (SPN) extracted from the original images are whitened first, then they are averaged to generate the camera reference SPN. Motivated by Goljan 's test statistic peak to correlation energy (PCE), we propose to use correlation to circular correlation norm (CCN) as the test statistic, which can lower the false positive rate to be a half of that with PCE. Theoretical analysis shows that the proposed CI method can remove the interference and raise the CCN value of a positive sample and thus achieve greater CI performance, CCN values of the negative sample class with the proposed method follow the normal distribution N (0,1) and the false positive rate can be calculated. Compared with the existing state of the art on seven cameras, 1400 photos totally (200 for each camera), the experimental results show that the proposed CI method achieves the best receiver operating characteristic (ROC) performance among all CI methods in all cases and especially achieves much better resistance to JPEG compression than all of the existing state-of-the-art CI methods.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 2 )