Cart (Loading....) | Create Account
Close category search window
 

H_{\infty } Filtering for Discrete-Time Systems With Stochastic Incomplete Measurement and Mixed Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Peng Shi ; Key Lab. of Adv. Control for Light Ind. Processes, Jiangnan Univ., Wuxi, China ; Xiaoli Luan ; Cheng-Lin Liu

This paper focuses on the H filtering problem for a class of discrete-time systems with stochastic incomplete measurement and mixed random delays. A more realistic and accurate measurement mode is proposed to compensate for the negative influence of both missing data and different time delays in a random way. In the system, all of the stochastic variables are mutually independent but satisfy the Bernoulli binary distribution. In particular, the stochastic infinite distributed delays are introduced in the discrete-time domain. Sufficient conditions for the existence of the admissible filter are derived in terms of linear matrix inequalities, which ensures the asymptotic stability as well as a prescribed H performance for the filter errors. A simulation example is exploited to demonstrate the effectiveness of the proposed design procedures.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.