By Topic

Magnetic Anomaly Detection Using High-Order Crossing Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sheinker, A. ; SOREQ Nucl. Res. Center, Yavne, Israel ; Ginzburg, B. ; Salomonski, N. ; Dickstein, P.A.
more authors

Magnetic anomaly detection (MAD) is a passive method used to detect visually obscured ferromagnetic objects by revealing the anomalies in the ambient Earth magnetic field. In this paper, we propose a method for MAD employing the high-order crossing (HOC) approach, which relies on the magnetic background nature. HOC is an alternative method for spectral analysis using zero-crossing count, also enabling signal discrimination. Tests with real-world recorded magnetic signals show high detection probability even for low signal-to-noise ratio. The high detection probability, together with a simple implementation and low power consumption, makes the HOC method attractive for real-time MAD applications such as intruder detection and for research on an earthquake magnetic precursor.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 4 )