By Topic

Clinical Evaluation of Respiratory Motion Compensation for Anatomical Roadmap Guided Cardiac Electrophysiology Procedures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
YingLiang Ma ; Div. of Imaging Sci. & Biomed. Eng., St. Thomas'' Hosp., London, UK ; King, A.P. ; Gogin, N. ; Gijsbers, G.
more authors

X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3-D roadmaps derived from preprocedural volumetric data can be used to add anatomical information. However, the registration between the 3-D roadmap and the 2-D X-ray image can be compromised by patient respiratory motion. Three methods were designed and evaluated to correct for respiratory motion using features in the 2-D X-ray images. The first method is based on tracking either the diaphragm or the heart border using the image intensity in a region of interest. The second method detects the tracheal bifurcation using the generalized Hough transform and a 3-D model derived from 3-D preoperative volumetric data. The third method is based on tracking the coronary sinus (CS) catheter. This method uses blob detection to find all possible catheter electrodes in the X-ray image. A cost function is applied to select one CS catheter from all catheter-like objects. All three methods were applied to X-ray images from 18 patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. The 2-D target registration errors (TRE) at the pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm ± 0.8 mm was achieved for the diaphragm tracking; 1.7 mm ± 0.9 mm for heart border tracking, 1.9 mm ± 1.0 mm for trachea tracking, and 1.8 mm ± 0.9 mm for CS catheter tracking. We present a comprehensive comparison between the techniques in terms of robustness, as computed by tracking errors, and accuracy, as computed by TRE using two independent approaches.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 1 )