Cart (Loading....) | Create Account
Close category search window
 

Particle Filtering and Posterior Cramér-Rao Bound for 2-D Direction of Arrival Tracking Using an Acoustic Vector Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xionghu Zhong ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Premkumar, A.B. ; Madhukumar, A.S.

Acoustic vector sensor (AVS) measures acoustic pressure as well as particle velocity, and therefore AVS signal contains 2-D (azimuth and elevation) DOA information of an acoustic source. Existing DOA estimation techniques assume that the source is static and extensively rely on the localization methods. In this paper, a particle filtering (PF) tracking approach is developed to estimate the 2-D DOA from signals collected by an AVS. A constant velocity model is employed to model the source dynamics and the likelihood function is derived based on a maximum likelihood estimation of the source amplitude and the noise variance. The posterior Cramér-Rao bound (PCRB) is also derived to provide a lower performance bound for AVS signal based tracking problem. Since PCRB incorporates the information from the source dynamics and measurement models, it is usually lower than traditional Cramér-Rao bound which only employs measurement model information. Experiments show that the proposed PF tracking algorithm significantly outperforms Capon beamforming based localization method and is much closer to the PCRB even in a challenging environment (e.g., SNR = -10 dB).

Published in:

Sensors Journal, IEEE  (Volume:12 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.