By Topic

Validation of non-linear dynamic FEM model for design of PM machines with concentrated windings in ship application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xuan, H.V. ; Delft Univ. of Technol., Delft, Netherlands ; Ani, S.O. ; Lahaye, D. ; Polinder, H.
more authors

The machine under study is a surface-mounted outer rotor permanent magnet (PM) synchronous machine with concentrated windings, which is integrated in a flywheel of a diesel engine. The main objective of this work is to build an accurate nonlinear transient finite element method (FEM) model coupling to circuit model and validate this experimentally. The FEM model is made by scripts, so it is very convenient to change design parameters of PM machine. This will help in design optimization of PM machines. A sample PM machine is investigated for validating no-load voltage, load voltage, electric current, electromagnetic torque, short circuit current and reactance of FEM model. Comparison of simulation and experimental results shows very good agreement with error margin smaller than 3%. Results show that the end effects of a PM machine with concentrated windings having large number of teeth and poles can be neglected, even when its diameter is larger than its length. Analysis of results during three-phase short circuit shows that armature current during short circuit is limited strongly by armature reaction in the d-axis direction, even though the winding resistance is much smaller than the reactance. It can be shown that a PM machine designed with reasonable reactance can avoid demagnetization due to three-phase short circuit.

Published in:

Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on

Date of Conference:

Aug. 30 2011-Sept. 1 2011