By Topic

Minority split and gain ratio for a class imbalance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kesinee Boonchuay ; Dept. of Math., Chulalongkorn Univ., Bangkok, Thailand ; Krung Sinapiromsaran ; Chidchanok Lursinsap

A decision tree is one of most popular classifiers that classifies a balanced data set effectively. For an imbalanced data set, a standard decision tree tends to misclassify instances of a class having tiny number of samples. In this paper, we modify the decision tree induction algorithm by performing a ternary split on continuous-valued attributes focusing on distribution of minority class instances. The algorithm uses the minority variance to rank candidates of the high gain ratio, then it chooses the candidate with the minimum minority entropy. From our experiments with data sets from UCI and Statlog repository, this method achieves the better performance comparing with C4.5 using only gain ratio for imbalanced data sets.

Published in:

Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on  (Volume:3 )

Date of Conference:

26-28 July 2011