By Topic

User behavior prediction for energy management in smart homes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaibin Bao ; Inst. AIFB, Karlsruhe Inst. of Technol., Karlsruhe, Germany ; Allerding, F. ; Schmeck, H.

In this paper, we focus on the prediction of user interactions within a real world scenario of energy management for a smart home. External signals, reflecting the low voltage grid's state, are used to address the challenge of balancing energy demand and generation. An autonomous system to aim at this challenge is proposed, in particular to coordinate decentralized power plants with the electrical load of the smart home. For that two prediction algorithms to estimate the future behavior of the smart home are presented: The Day Type Model and a probabilistic approach based on a first order Semi Markov Model. Some experimental results with real world data of the KIT smart home are presented.

Published in:

Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on  (Volume:2 )

Date of Conference:

26-28 July 2011