Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Adamczyk, A. ; Dept. of Energy Technol., Aalborg Univ., Aalborg, Denmark ; Teodorescu, R. ; Rodriguez, P.

Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability to Full-Scale Converter based type. Moreover resemblance of such Wind Power Plant to modern FACTS devices is recognized and exploited. Paper discusses many aspect of damping controller design, including feedback signal selection and control effectiveness with respect to wind farm location. Analysis and design is based on modal analysis, therefore matching modeling approach for wind power plant is proposed. Finally, performance of Wind Power Plant damping control is compared to a regular power system stabilizer installed on a synchronous generator.

Published in:

PowerTech, 2011 IEEE Trondheim

Date of Conference:

19-23 June 2011