By Topic

An ASIC-Based Vibration Damping System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Viant, J.-N. ; Univ. Claude Bernard Lyon 1, Villeurbanne, France ; Quiquerez, L. ; Lombard, P. ; Guo-Neng Lu

We propose an application-specified integrated circuit (ASIC)-based vibration damping system implementing a semiactive controlling method called synchronized switch damping on inductor (SSDI). The ASIC integrates high-voltage switches and diodes for an “energy-extracting” passive LC shunt circuit and a controlling part for synchronous voltage inversion on the piezoelectric transducer. The controlling part has two channels, each including a range-adaptive voltage divider with protection and a peak detector with switch-control output. The system has been tested with both cantilever beam and three-side-clamped-plate structures. Cantilever beam testing shows a 15 dB damping in forced harmonic regime and a fivefold damping rate in pulsed-excitation transient response. For the three-side-clamped-plate case, wideband SSDI damping effects are observed. The damping efficiency for each mode depends on the electromechanical coupling factor and the mapping of the piezoelectric-insert damping zones. It also depends on the excitation level, and begins to increase rapidly with vibration magnitude when the piezoelectric transducer's voltage peaks exceed a certain threshold voltage (~ 0.5 V for the system).

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:18 ,  Issue: 1 )