Cart (Loading....) | Create Account
Close category search window

Hybrid Spectral-Domain Ray Tracing Method for Fast Analysis of Millimeter-Wave and Terahertz-Integrated Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hailu, D.M. ; Electr. & Comput. Eng. Dept., Univ. of Waterloo, Waterloo, ON, Canada ; Ehtezazi, I.A. ; Neshat, M. ; Shaker, G.S.A.
more authors

In this paper, we present a computationally efficient hybrid spectral ray tracing (HSRT) method that requires only one spectral domain integration step for each observation point. The HSRT method is capable of modeling arbitrary three-dimensional dielectric and metallic structures. We compare and validate various versions of the HSRT method including MoM-SRT, and MLFMM-SRT, with measurements and commercial software FEKO for method of moments (MoM), multi-level fast multipole method (MLFMM) and physical optics (PO) via simulation of a bow-tie terahertz antenna backed by hyper-hemispherical silicon lens and an on-chip dipole antenna attached to lens. It is shown that the MoM-SRT is more accurate than MoM-PO and comparable in speed. The HSRT algorithm is applied to simulation of on-chip dipole antenna backed by Silicon lens and integrated with a 180-GHz VCO and compared with measurements. In addition, it is shown that the matrix formulation of SRT and HSRT is a promising approach for solving complex electrically large problems with high accuracy.

Published in:

Terahertz Science and Technology, IEEE Transactions on  (Volume:1 ,  Issue: 2 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.