Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Low Profile Fully Planar Folded Dipole Antenna on a High Impedance Surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vallecchi, Andrea ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California-Irvine, Irvine, CA, USA ; De Luis, J.R. ; Capolino, F. ; De Flaviis, F.

A fully planar antenna design incorporating a high impedance surface (HIS) is presented. The HIS is composed by a periodic array of subwavelength dogbone-shaped conductors printed on top of a thin dielectric substrate and backed by a metallic ground plane. First, the characteristics of a dipole over PEC or PMC layers, a dielectric slab, and the HIS are compared and studied in detail, highlighting the advantages provided by the use of the HIS. Then, the design of a low profile folded dipole antenna working at 5.5 GHz on top of the HIS is described. The surface provides close to 6% antenna impedance bandwidth and increased gain up to 7 dBi, while shielding the lower half space from radiation. The antenna structure comprises three metal layers without any vias between them, and its overall thickness is 0.059λ0. The dipole is fed by a balanced twin lead line through a balun transformer integrated in the same antenna layer. A prototype has been built and measurements confirming simulation results are provided.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 1 )