Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Constant-Time Filtering Using Shiftable Kernels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chaudhury, K.N. ; Princeton Univ., Princeton, NJ, USA

It was recently demonstrated in that the nonlinear bilateral filter can be efficiently implemented using a constant-time or O(1) algorithm. At the heart of this algorithm was the idea of approximating the Gaussian range kernel of the bilateral filter using trigonometric functions. In this letter, we explain how the idea in can be extended to few other linear and nonlinear filters . While some of these filters have received a lot of attention in recent years, they are known to be computationally intensive. To extend the idea in , we identify a central property of trigonometric functions, called shiftability, that allows us to exploit the redundancy inherent in the filtering operations. In particular, using shiftable kernels, we show how certain complex filtering can be reduced to simply that of computing the moving sum of a stack of images. Each image in the stack is obtained through an elementary pointwise transform of the input image. This has a two-fold advantage. First, we can use fast recursive algorithms for computing the moving sum , , and, secondly, we can use parallel computation to further speed up the computation. We also show how shiftable kernels can also be used to approximate the (nonlinearshiftable) Gaussian kernel that is ubiquitously used in image filtering.

Published in:

Signal Processing Letters, IEEE  (Volume:18 ,  Issue: 11 )